Are we witnessing the dawn of post-theory science?

By | January 10, 2022

Laura Spinney writes:

Isaac Newton apocryphally discovered his second law – the one about gravity – after an apple fell on his head. Much experimentation and data analysis later, he realised there was a fundamental relationship between force, mass and acceleration. He formulated a theory to describe that relationship – one that could be expressed as an equation, F=ma – and used it to predict the behaviour of objects other than apples. His predictions turned out to be right (if not always precise enough for those who came later).

Contrast how science is increasingly done today. Facebook’s machine learning tools predict your preferences better than any psychologist. AlphaFold, a program built by DeepMind, has produced the most accurate predictions yet of protein structures based on the amino acids they contain. Both are completely silent on why they work: why you prefer this or that information; why this sequence generates that structure.

You can’t lift a curtain and peer into the mechanism. They offer up no explanation, no set of rules for converting this into that – no theory, in a word. They just work and do so well. We witness the social effects of Facebook’s predictions daily. AlphaFold has yet to make its impact felt, but many are convinced it will change medicine.

Somewhere between Newton and Mark Zuckerberg, theory took a back seat. [Continue reading…]

Print Friendly, PDF & Email