Carbon-reduction plans rely on technology that doesn’t exist

By | August 10, 2022

Naomi Oreskes writes:

At last year’s Glasgow COP26 meetings on the climate crisis, U.S. envoy and former U.S. secretary of state John Kerry stated that solutions to the climate crisis will involve “technologies that we don’t yet have” but are supposedly on the way. Kerry’s optimism comes directly from scientists. You can read about these beliefs in the influential Intergovernmental Panel on Climate Change (IPCC) Integrated Assessment Models, created by researchers. These models present pathways to carbon reductions that may permit us to keep climate change below two degrees Celsius. They rely heavily on technologies that don’t yet exist, such as ways to store carbon in the ground safely, permanently and affordably.

Stop and think about this for a moment. Science—that is to say, Euro-American science—has long been held as our model for rationality. Scientists frequently accuse those who reject their findings of being irrational. Yet depending on technologies that do not yet exist is irrational, a kind of magical thinking. That is a developmental stage kids are expected to outgrow. Imagine if I said I planned to build a home with materials that had not yet been invented or build a civilization on Mars without first figuring out how to get even one human being there. You’d likely consider me irrational, perhaps delusional. Yet this kind of thinking pervades plans for future decarbonization.

The IPCC models, for instance, depend heavily on carbon capture and storage, also called carbon capture and sequestration (either way, CCS). Some advocates, including companies such as ExxonMobil, say CCS is a proven, mature technology because for years industry has pumped carbon dioxide or other substances into oil fields to flush more fossil fuel out of the ground. But carbon dioxide doesn’t necessarily stay in the rocks and soil. It may migrate along cracks, faults and fissures before finding its way back to the atmosphere. Keeping pumped carbon in the ground—in other words, achieving net negative emissions—is much harder. Globally there are only handful of places where this is done. None of them is commercially viable. [Continue reading…]

Print Friendly, PDF & Email