Study suggests the brain works like a resonance chamber
Researchers at the Champalimaud Foundation and the University of Minho, in Portugal, have found evidence of resonant waves in rat brain activity using ultrafast and ultrahigh field magnetic resonance imaging. Their work demonstrates from simple fundamental principles how such waves – much in the manner of sound vibrations in a guitar chamber – can form connections between distant brain areas, which are key for healthy brain function.
It’s been over 20 years since neuroimaging studies – using functional magnetic resonance imaging (fMRI), a widely-used technology to capture live videos of brain activity – have been detecting brain-wide complex patterns of correlated brain activity that appear disrupted in a wide range of neurological and psychiatric disorders. These patterns form spontaneously, even at rest when no particular task is being performed, and have been detected not only in humans but also across mammals, including monkeys and rodents.
Although such spatial patterns of correlated activation have been consistently detected across neuroimaging centers around the world, the nature of these correlations was not clear. “We do not yet fully understand how the brain communicates over long distances. We know that distant areas exhibit signal correlations, and that they are implicated in brain function, but we do not completely understand their nature”, says Noam Shemesh, principal investigator of the Preclinical MRI Lab at the Champalimaud Foundation, in Lisbon, and senior author of a study published in the journal Nature Communications.
“In this study, we wanted to understand what lies underneath those correlations and investigate the mechanisms involved”, stresses Shemesh. [Continue reading…]