What is machine learning?

What is machine learning?

John Pavlus writes:

By now, many people think they know what machine learning is: You “feed” computers a bunch of “training data” so that they “learn” to do things without our having to specify exactly how. But computers aren’t dogs, data isn’t kibble, and that previous sentence has way too many air quotes. What does that stuff really mean?

Machine learning is a subfield of artificial intelligence, which explores how to computationally simulate (or surpass) humanlike intelligence. While some AI techniques (such as expert systems) use other approaches, machine learning drives most of the field’s current progress by focusing on one thing: using algorithms to automatically improve the performance of other algorithms.

Here’s how that can work in practice, for a common kind of machine learning called supervised learning. The process begins with a task — say, “recognize cats in photos.” The goal is to find a mathematical function that can accomplish the task. This function, which is called the model, will take one kind of numbers as input — in this case, digitized photographs — and transform them into more numbers as output, which might represent labels saying “cat” or “not cat.” The model has a basic mathematical form, or shape, that provides some structure for the task, but it’s not likely to produce accurate results at first.

Now it’s time to train the model, which is where another kind of algorithm takes over. First, a different mathematical function (called the objective) computes a number representing the current “distance” between the model’s outputs and the desired result. Then, the training algorithm uses the objective’s distance measurement to adjust the shape of the original model. It doesn’t have to “know” anything about what the model represents; it simply nudges parts of the model (called the parameters) in certain mathematical directions that minimize that distance between actual and desired output.

Once these adjustments are made, the process restarts. The updated model transforms inputs from the training examples into (slightly better) outputs, then the objective function indicates yet another (slightly better) adjustment to the model. And so on, back and forth, back and forth. After enough iterations, the trained model should be able to produce accurate outputs for most of its training examples. And here’s the real trick: It should also maintain that performance on new examples of the task, as long as they’re not too dissimilar from the training. [Continue reading…]

Comments are closed.