What complexity science says about what makes a winning team
Jessica Flack and Cade Massey write:
In Philip K Dick’s classic science fiction novel Ubik, one of the main characters, Runciter, is in charge of assembling a team of individuals called ‘inertials’. The hope is that they will counteract the power of ‘precogs’ and ‘telepaths’, recruited by corporations to carry out espionage and other nefarious activities. Each inertial is a superstar with a unique talent – but Runciter’s concern is their collective power.
Interest in collective behaviour is not new. It’s been the research subject of organisation scholars, anthropologists, economists, ethologists studying group-living animals and evolutionary biologists interested in the evolution of cooperation. And, of course, it’s the chief occupation of coaches and managers building teams across a wide range of sports. Although many of us believe a team is more than just the sum of its outstanding individual performers, this kind of simple-minded thinking still dominates recruitment and team assembly in sports, finance, academia and other settings.
Part of the reason why recruiters and others resort to going after the best players rather than building the best team is that it remains unclear what other factors contribute to team greatness, and how to quantify them. Moreover, simply recruiting the best players is fairly straightforward, and some analyses suggest this approach might even be the most reliable: as the sociologist Duncan Watts and colleagues argued, overall talent level is often the single best predictor of team performance. Yet we shouldn’t be lured into thinking overall talent is the best predictor because it is the most important factor. It might be the best predictor because we’re not yet good at capturing the nuance of collective dynamics. Hints that this could be the case come from studies such as that of the management scholar Satyam Mukherjee and colleagues, in which they found that prior shared success can predict performance above and beyond what would be expected from the group’s composition and talent.
These seemingly at-odds results raise the question: how does a collective work exactly? When is it more than the sum of its parts? The increasing availability of data on individual decision-making across the social sciences, coupled with how complexity science is improving our understanding of the mechanics of group performance, are changing what’s possible. Some of the questions that can now be answered include how a team synchronises, when contributions are synergistic as opposed to additive, and whether it’s the players’ skill or the strategies they use that’s more important. Before we get to promising future directions, though, it’s worth considering the existing space of ideas about what makes a good team, as well as some scenarios suggesting greater nuance is required. [Continue reading…]