Swarming bacteria create an ‘impossible’ superfluid

Charlie Wood writes:

Outside of the imaginations of physics teachers, frictionless devices are hard to come by. But putting a bunch of swimming bacteria into a drop of water achieves just that: a fluid with zero resistance to motion. Incredibly, that resistance (or viscosity, as it’s properly known) can even go negative, creating a self-propelling liquid that might, say, turn a motor in a way that seems to defy the laws of thermodynamics. Recent work explains how bacteria conspire to pull off the improbable.

“For a normal fluid it’s impossible because the whole thing would be unstable,” said Aurore Loisy, a physicist at the University of Bristol in the United Kingdom and a coauthor of one of the new studies, “but for bacteria somehow it works.”

Physicists have long dreamt of getting something for nothing, even if only in outlandish thought experiments. In the 1860s James Maxwell conjured up an all-knowing demon who could shunt fast air molecules to one side of a room and slow molecules to the other, creating a temperature difference that could power an engine. With marginally more practicality, in 1962 Richard Feynman lectured about a microscopic gear that, when jostled by air molecules, would turn in only one direction, driving a motor. But such ideas are dashed by the Second Law of Thermodynamics, which insists that the sorting or the turning must generate heat that dooms both schemes. As the poet Allen Ginsberg put it, you can’t win, and you can’t break even.

Recently, evidence has been mounting that while a free lunch is off the table, a cheap snack might be feasible with a system built around a living fluid. Experimental oddities began to surface in 2015 when a French team confirmed that solutions of E. coli and water could get unnaturally slick. Sandwiching a drop between two small plates, they recorded the force needed to make one plate slide at a certain speed. Liquids usually get harder to stir, or more viscous, when they contain additional suspended particles (think water vs. mud), but the opposite turns out to be true when the particles can swim. When the solution was around half a percent E. coli by volume, keeping the plate moving required no force at all, indicating zero viscosity. Some trials even registered negative viscosity, when the researchers had to apply a bit of force against the plates’ motion to keep them from speeding up. The liquid was doing work, which for any inert fluid would have meant a violation of the Second Law.

The straightforward conclusion was that the organisms were swimming in a way that neutralized the solution’s internal friction to produce something like a superfluid, a liquid with zero resistance. The apparent thermodynamics violation was an illusion because the bacteria were doing the work to offset or overcome the viscosity. [Continue reading…]

Humans cannot survive without them yet within a century the world’s insects may be extinct

The Guardian reports:

The world’s insects are hurtling down the path to extinction, threatening a “catastrophic collapse of nature’s ecosystems”, according to the first global scientific review.

More than 40% of insect species are declining and a third are endangered, the analysis found. The rate of extinction is eight times faster than that of mammals, birds and reptiles. The total mass of insects is falling by a precipitous 2.5% a year, according to the best data available, suggesting they could vanish within a century.

The planet is at the start of a sixth mass extinction in its history, with huge losses already reported in larger animals that are easier to study. But insects are by far the most varied and abundant animals, outweighing humanity by 17 times. They are “essential” for the proper functioning of all ecosystems, the researchers say, as food for other creatures, pollinators and recyclers of nutrients.

Insect population collapses have recently been reported in Germany and Puerto Rico, but the review strongly indicates the crisis is global. The researchers set out their conclusions in unusually forceful terms for a peer-reviewed scientific paper: “The [insect] trends confirm that the sixth major extinction event is profoundly impacting [on] life forms on our planet.

“Unless we change our ways of producing food, insects as a whole will go down the path of extinction in a few decades,” they write. “The repercussions this will have for the planet’s ecosystems are catastrophic to say the least.”

The analysis, published in the journal Biological Conservation, says intensive agriculture is the main driver of the declines, particularly the heavy use of pesticides. Urbanisation and climate change are also significant factors.

“If insect species losses cannot be halted, this will have catastrophic consequences for both the planet’s ecosystems and for the survival of mankind,” said Francisco Sánchez-Bayo, at the University of Sydney, Australia, who wrote the review with Kris Wyckhuys at the China Academy of Agricultural Sciences in Beijing.

The 2.5% rate of annual loss over the last 25-30 years is “shocking”, Sánchez-Bayo told the Guardian: “It is very rapid. In 10 years you will have a quarter less, in 50 years only half left and in 100 years you will have none.” [Continue reading…]

Plankton that are both plant-like and animal-like are redefining marine ecology

Knowable magazine reports:

Their color gave them away. Ecologist Diane Stoecker was looking at plankton in samples of ocean water from the dock in Woods Hole Harbor in Massachusetts some 40 years ago when she spotted something strange. Under the microscope, she recognized Laboea strobila, shaped like an ice-cream cone — “yellowish green and very beautiful,” she recalls — and the smaller, more spherical Strombidium species — also oddly greenish.

Stoecker knew that these single-celled critters, named ciliates for the hairlike cilia that they bear, got their energy by feeding on other, smaller organisms. So why were the ones she saw so green — a color that generally signifies photosynthesis? Was the pigment leftover food, ingested algae or just the algae’s chloroplasts?

After some groundbreaking experiments, Stoecker was one of the first scientists to describe how these types of plankton not only hunted their prey, but also sequestered the chloroplasts of their food sources and used them to get energy from sunlight. “I was very excited to find that they really were photosynthetic,” she says.

Traditionally, marine microplankton had been divided similarly to species on land. You had plant-like phytoplankton, such as algae, and animal-like zooplankton that ate the phytoplankton. What Stoecker found was that some of these organisms were somewhere in the middle: They could eat like animals when food was present and photosynthesize like plants in the light. “If you think about it, it can be the best of both worlds,” says marine ecologist Dave A. Caron of the University of Southern California. [Continue reading…]

Evidence mounts that gut bacteria can influence mood, prevent depression

Science magazine reports:

Of all the many ways the teeming ecosystem of microbes in a person’s gut and other tissues might affect health, its potential influences on the brain may be the most provocative. Now, a study of two large groups of Europeans has found several species of gut bacteria are missing in people with depression. The researchers can’t say whether the absence is a cause or an effect of the illness, but they showed that many gut bacteria could make substances that affect nerve cell function—and maybe mood.

“It’s the first real stab at tracking how” a microbe’s chemicals might affect mood in humans, says John Cryan, a neuroscientist at University College Cork in Ireland who has been one of the most vocal proponents of a microbiome-brain connection. The study “really pushes the field from where it’s been” with small studies of depressed people or animal experiments. Interventions based on the gut microbiome are now under investigation: The University of Basel in Switzerland, for example, is planning a trial of fecal transplants, which can restore or alter the gut microbiome, in depressed people.

Several studies in mice had indicated that gut microbes can affect behavior, and small studies of people suggested this microbial repertoire is altered in depression. To test the link in a larger group, Jeroen Raes, a microbiologist at the Catholic University of Leuven in Belgium, and his colleagues took a closer look at 1054 Belgians they had recruited to assess a “normal” microbiome. Some in the group—173 in total—had been diagnosed with depression or had done poorly on a quality of life survey, and the team compared their microbiomes with those other participants. Two kinds of microbes, Coprococcus and Dialister, were missing from the microbiomes of the depressed subjects, but not from those with a high quality of life. The finding held up when the researchers allowed for factors such as age, sex, or antidepressant use, all of which influence the microbiome, the team reports today in Nature Microbiology. They also found the depressed people had an increase in bacteria implicated in Crohn disease, suggesting inflammation may be at fault. [Continue reading…]

Inside the struggle to define life

Ian Sample writes:

All the brain cells of life on Earth still cannot explain life on Earth. Its most intelligent species has uncovered the building blocks of matter, read countless genomes and watched spacetime quiver as black holes collide. It understands much of how living creatures work, but not how they came to be. There is no agreement, even, on what life is.

The conundrum of life is so fundamental that to solve it would rank among the most important achievements of the human mind. But for all scientists’ efforts – and there have been plenty – the big questions remain. If biology is defined as the study of life, on this it has failed to deliver.

But enlightenment may come from another direction. Rather than biology, some scientists are now looking to physics for answers, in particular the physics of information. Buried in the rules that shape information lie the secrets of life and perhaps even the reason for our existence.

That, at least, is the bold proposal from Paul Davies, a prominent physicist who explores the idea in his forthcoming book, The Demon in the Machine. Published next week, it continues a theme of thinking that landed Davies the $1m Templeton prize for contributions to religious thought and inquiry.

As director of the Beyond Center for Fundamental Concepts in Science at Arizona State University, Davies is well placed to spot the next wave that will crash over science. What he sees on the horizon is a revolution that brings physics and biology together through the common science of information.

“The basic hypothesis is this,” Davies says. “We have fundamental laws of information that bring life into being from an incoherent mish-mash of chemicals. The remarkable properties we associate with life are not going to come about by accident.”

The proposal takes some unpacking. Davies believes that the laws of nature as we know them today are insufficient to explain what life is and how it came about. We need to find new laws, he says, or at least new principles, which describe how information courses around living creatures. Those rules may not only nail down what life is, but actively favour its emergence. [Continue reading…]

As climate warms, plants will absorb less carbon dioxide

The New York Times reports:

The last time the atmosphere contained as much carbon dioxide as it does now, dinosaurs roamed what was then a verdant landscape. The earth’s lushness was at least partly caused by the abundance of CO₂, which plants use for photosynthesis. That has led to the idea that more CO₂ in the atmosphere could create a literally greener planet.

Today, plants and soil around the world absorb roughly a quarter of the greenhouse gases that humans release into the atmosphere, helping the Earth avoid some of the worst effects of climate change. In an ideal situation, as levels of carbon dioxide increased, plants would soak up more of these emissions, helping to fuel their growth.

But in a study published Wednesday in the journal Nature, researchers found that under a warming climate, rather than absorbing more greenhouse gas emissions, plants and soil may start absorbing less, accelerating the rate of change.

“We have this image of the planet getting very, very green as we move into the future,” said Pierre Gentine, a professor in the Department of Earth and Environmental Engineering at Columbia University and an author of the study. “But it may be the opposite.” [Continue reading…]

What animals are thinking and feeling, and why it should matter


Insect collapse: ‘We are destroying our life support systems’

The Guardian reports:

“We knew that something was amiss in the first couple days,” said Brad Lister. “We were driving into the forest and at the same time both Andres and I said: ‘Where are all the birds?’ There was nothing.”

His return to the Luquillo rainforest in Puerto Rico after 35 years was to reveal an appalling discovery. The insect population that once provided plentiful food for birds throughout the mountainous national park had collapsed. On the ground, 98% had gone. Up in the leafy canopy, 80% had vanished. The most likely culprit by far is global warming.

“It was just astonishing,” Lister said. “Before, both the sticky ground plates and canopy plates would be covered with insects. You’d be there for hours picking them off the plates at night. But now the plates would come down after 12 hours in the tropical forest with a couple of lonely insects trapped or none at all.”

“It was a true collapse of the insect populations in that rainforest,” he said. “We began to realise this is terrible – a very, very disturbing result.”

Earth’s bugs outweigh humans 17 times over and are such a fundamental foundation of the food chain that scientists say a crash in insect numbers risks “ecological Armageddon”. When Lister’s study was published in October, one expert called the findings “hyper-alarming”.

The Puerto Rico work is one of just a handful of studies assessing this vital issue, but those that do exist are deeply worrying. Flying insect numbers in Germany’s natural reserves have plunged 75% in just 25 years. The virtual disappearance of birds in an Australian eucalyptus forest was blamed on a lack of insects caused by drought and heat. Lister and his colleague Andrés García also found that insect numbers in a dry forest in Mexico had fallen 80% since the 1980s.

“We are essentially destroying the very life support systems that allow us to sustain our existence on the planet, along with all the other life on the planet,” Lister said. “It is just horrifying to watch us decimate the natural world like this.” [Continue reading…]

How beauty is making biologists rethink evolution

Ferris Jabr writes:

A male flame bowerbird is a creature of incandescent beauty. The hue of his plumage transitions seamlessly from molten red to sunshine yellow. But that radiance is not enough to attract a mate. When males of most bowerbird species are ready to begin courting, they set about building the structure for which they are named: an assemblage of twigs shaped into a spire, corridor or hut. They decorate their bowers with scores of colorful objects, like flowers, berries, snail shells or, if they are near an urban area, bottle caps and plastic cutlery. Some bowerbirds even arrange the items in their collection from smallest to largest, forming a walkway that makes themselves and their trinkets all the more striking to a female — an optical illusion known as forced perspective that humans did not perfect until the 15th century.

Yet even this remarkable exhibition is not sufficient to satisfy a female flame bowerbird. Should a female show initial interest, the male must react immediately. Staring at the female, his pupils swelling and shrinking like a heartbeat, he begins a dance best described as psychotically sultry. He bobs, flutters, puffs his chest. He crouches low and rises slowly, brandishing one wing in front of his head like a magician’s cape. Suddenly his whole body convulses like a windup alarm clock. If the female approves, she will copulate with him for two or three seconds. They will never meet again.

The bowerbird defies traditional assumptions about animal behavior. Here is a creature that spends hours meticulously curating a cabinet of wonder, grouping his treasures by color and likeness. Here is a creature that single-beakedly builds something far more sophisticated than many celebrated examples of animal toolmaking; the stripped twigs that chimpanzees use to fish termites from their mounds pale in comparison. The bowerbird’s bower, as at least one scientist has argued, is nothing less than art. When you consider every element of his courtship — the costumes, dance and sculpture — it evokes a concept beloved by the German composer Richard Wagner: Gesamtkunstwerk, a total work of art, one that blends many different forms and stimulates all the senses.


This extravagance is also an affront to the rules of natural selection. Adaptations are meant to be useful — that’s the whole point — and the most successful creatures should be the ones best adapted to their particular environments. So what is the evolutionary justification for the bowerbird’s ostentatious display? Not only do the bowerbird’s colorful feathers and elaborate constructions lack obvious value outside courtship, but they also hinder his survival and general well-being, draining precious calories and making him much more noticeable to predators.

Numerous species have conspicuous, metabolically costly and physically burdensome sexual ornaments, as biologists call them. Think of the bright elastic throats of anole lizards, the Fabergé abdomens of peacock spiders and the curling, iridescent, ludicrously long feathers of birds-of-paradise. To reconcile such splendor with a utilitarian view of evolution, biologists have favored the idea that beauty in the animal kingdom is not mere decoration — it’s a code. According to this theory, ornaments evolved as indicators of a potential mate’s advantageous qualities: its overall health, intelligence and survival skills, plus the fact that it will pass down the genes underlying these traits to its children. A bowerbird with especially bright plumage might have a robust immune system, for example, while one that finds rare and distinctive trinkets might be a superb forager. Beauty, therefore, would not confound natural selection — it would be very much a part of it.

Charles Darwin himself disagreed with this theory. Although he co-discovered natural selection and devoted much of his life to demonstrating its importance, he never claimed that it could explain everything. Ornaments, Darwin proposed, evolved through a separate process he called sexual selection: Females choose the most appealing males “according to their standard of beauty” and, as a result, males evolve toward that standard, despite the costs. Darwin did not think it was necessary to link aesthetics and survival. Animals, he believed, could appreciate beauty for its own sake. Many of Darwin’s peers and successors ridiculed his proposal. To them, the idea that animals had such cognitive sophistication — and that the preferences of “capricious” females could shape entire species — was nonsense. Although never completely forgotten, Darwin’s theory of beauty was largely abandoned.

Now, nearly 150 years later, a new generation of biologists is reviving Darwin’s neglected brainchild. Beauty, they say, does not have to be a proxy for health or advantageous genes. Sometimes beauty is the glorious but meaningless flowering of arbitrary preference. [Continue reading…]

Emergence: How complex wholes arise from simple parts

John Rennie writes:

You could spend a lifetime studying an individual water molecule and never deduce the precise hardness or slipperiness of ice. Watch a lone ant under a microscope for as long as you like, and you still couldn’t predict that thousands of them might collaboratively build bridges with their bodies to span gaps. Scrutinize the birds in a flock or the fish in a school and you wouldn’t find one that’s orchestrating the movements of all the others.

Nature is filled with such examples of complex behaviors that arise spontaneously from relatively simple elements. Researchers have even coined the term “emergence” to describe these puzzling manifestations of self-organization, which can seem, at first blush, inexplicable. Where does the extra injection of complex order suddenly come from?

Answers are starting to come into view. One is that these emergent phenomena can be understood only as collective behaviors — there is no way to make sense of them without looking at dozens, hundreds, thousands or more of the contributing elements en masse. These wholes are indeed greater than the sums of their parts.

Another is that even when the elements continue to follow the same rules of individual behavior, external considerations can change the collective outcome of their actions. For instance, ice doesn’t form at zero degrees Celsius because the water molecules suddenly become stickier to one another. Rather, the average kinetic energy of the molecules drops low enough for the repulsive and attractive forces among them to fall into a new, more springy balance. That liquid-to-solid transition is such a useful comparison for scientists studying emergence that they often characterize emergent phenomena as phase changes.

Our latest In Theory video on emergence explains more about how throngs of simple parts can self-organize into a more extraordinary whole: