Evolutionary adaptations to viruses have made us what we are
Science Daily (2016):
The constant battle between pathogens and their hosts has long been recognized as a key driver of evolution, but until now scientists have not had the tools to look at these patterns globally across species and genomes. In a new study, researchers apply big-data analysis to reveal the full extent of viruses’ impact on the evolution of humans and other mammals.
Their findings suggest an astonishing 30 percent of all protein adaptations since humans’ divergence with chimpanzees have been driven by viruses.
“When you have a pandemic or an epidemic at some point in evolution, the population that is targeted by the virus either adapts, or goes extinct. We knew that, but what really surprised us is the strength and clarity of the pattern we found,” said David Enard, Ph.D., a postdoctoral fellow at Stanford University and the study’s first author. “This is the first time that viruses have been shown to have such a strong impact on adaptation.”
The study was recently published in the journal eLife and will be presented at The Allied Genetics Conference, a meeting hosted by the Genetics Society of America, on July 14.
Proteins perform a vast array of functions that keep our cells ticking. By revealing how small tweaks in protein shape and composition have helped humans and other mammals respond to viruses, the study could help researchers find new therapeutic leads against today’s viral threats.
“We’re learning which parts of the cell have been used to fight viruses in the past, presumably without detrimental effects on the organism,” said the study’s senior author, Dmitri Petrov, Ph.D., Michelle and Kevin Douglas Professor of Biology and Associate Chair of the Biology Department at Stanford. “That should give us an insight on the pressure points and help us find proteins to investigate for new therapies.”
Previous research on the interactions between viruses and proteins has focused almost exclusively on individual proteins that are directly involved in the immune response — the most logical place you would expect to find adaptations driven by viruses. This is the first study to take a global look at all types of proteins.
“The big advancement here is that it’s not only very specialized immune proteins that adapt against viruses,” said Enard. “Pretty much any type of protein that comes into contact with viruses can participate in the adaptation against viruses. It turns out that there is at least as much adaptation outside of the immune response as within it.” [Continue reading…]